Linear Time-Invariant Systems

Jiwook Kim

1. Let

$$x[n] = \delta[n] + 2\delta[n-1] - \delta[n-3]$$

 $h[n] = 2\delta[n+1] + 2\delta[n-1].$

Compute and plot each of the following convolutions:

(a)
$$Y_1[n] = x[n] * h[n]$$

Equation for convolution for discrete and continuous cases

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = x[n] * h[n]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

Convolution Summation or Superposition summation for $Y_1[n] = x[n] * h[n]$

$$\sum_{k=-\infty}^{\infty} x[n-k] * h[k]$$

h[k] is only defined at k = 1 and k = -1 because of equation h[n] = $2\delta[n+1] + 2\delta[n-1]$.

$$Y_1[n] = x[n+1] h[-1] + x[n-1] h[1]$$

 $Y_1[n] = x[n+1] h[-1] + x[n-1] h[1]$
 $Y_1[n] = 2 * x[n+1] + 2 * x[n-1]$
 $Y_1[n] = 2 (x[n+1] + x[n-1])$

Find
$$[n+1]$$
 and $x[n-1]$
Since $x[n] = \delta[n] + 2\delta[n-1] - \delta[n-3]$

$$x[n+1] = \delta[n+1] + 2\delta[n] - \delta[n-2]$$

 $x[n-1] = \delta[n-1] + 2\delta[n-2] - \delta[n-4]$

Plug in x[n+1], x[n-1] to $Y_1[n]$

$$Y_1[n] = 2 (\delta[n+1] + 2\delta[n] - \delta[n-2] + \delta[n-1] + 2\delta[n-2] - \delta[n-4])$$

$$Y_1[n] = 2\delta[n+1] + 4\delta[n] + 2\delta[n-1] + 2\delta[n-2] - 2\delta[n-4]$$

2. Consider the signal

$$h[n] = \frac{1}{2}^{n-1}u[n+3] - u[n-10]$$

Express A and B in terms of n so that the following equation holds:

$$h[n-k] = \begin{cases} 0.5^{n-k-1} & A \le k \le B\\ 0 & \text{elsewhere} \end{cases}$$

First,

$$u[n+3] - u[n-10] = \begin{cases} 0 & \text{for n} < -3 \\ 1 & -3 \le n \le 9 \\ 0 & \text{for n} > 10 \end{cases}$$

For h[k]

$$h[k] = \begin{cases} 0.5^{k-1} & -3 \le k \le 9\\ 0 & \text{elsewhere} \end{cases}$$

For h[-k]

$$h[-k] = \begin{cases} 0.5^{-k-1} & -9 \le k \le 3\\ 0 & \text{elsewhere} \end{cases}$$

For h[n-k]

$$h[n-k] = \begin{cases} 0.5^{n-k-1} & \text{n-9} \le k \le \text{n+3} \\ 0 & \text{elsewhere} \end{cases}$$

Therefore,

$$A = n-9$$

B = n+3

3. Consider an input x[n] and a unit impulse response h[n] given by

$$x[n] = 0.5^{n-2}u[n-2]$$

$$h[n] = u[n+2]$$

Determine and plot the output y[n] = x[n] * h[n].

Convolution equation
$$x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[n-k]*h[k]$$

$$\sum_{k=-\infty}^{\infty} 0.5^{n-2-k} u[n-2-k] * u[k+2]$$

It is defined from when k = 2 because of equation h[k]= u[k+2]

$$y[n] = \sum_{k=-2}^{\infty} 0.5^{n-2-k} u[n-2-k]$$

$$y[n] = \sum_{k=-2}^{n-2} 0.5^{n-2-k}$$

$$y[n] = \sum_{k=0}^{n} 0.5^{n}$$

Equation for geometric progression series

$$\frac{a(1-r^n)}{1-r}$$

Therefore,

$$y(n) = \frac{(1 - 0.5^n)}{1 - 0.5}$$

$$y(n) = 2 * (1 - 0.5^n) u[n]$$

4. Determine and sketch the convolution of the following two signals

4 t

6

2

$$x(t) = \begin{cases} t+1 & 0 \le t \le 1\\ 2-t & 1 < t \le 2\\ 0 & \text{elsewhere} \end{cases}$$

$$h[t] = \delta[t+2] + 2\delta[t+1]$$

For $0 \le t \le 1$ at t = 0

1

x(0) = 1

at t = 1

x(1) = 2

For $1 < t \le 2$

at t = 1

x(1) = 1

at t = 2

x(2) = 0

$$y(t) = x(t) * h(t)$$

 $y(t) = x(t)(\delta[t+2] + 2\delta[t+1])$

Since
$$x(t)*\delta[t + t_0] = x[t + t_0]$$

$$y(t) = x(t+2) + 2x(t+1)$$

$$x(t) = \begin{cases} t+1 & 0 \le t \le 1\\ 2-t & 1 < t \le 2\\ 0 & \text{elsewhere} \end{cases}$$

$$x(t+2) = \begin{cases} t+3 & \text{-}2 \leq \mathsf{t} \leq \text{-}1 \\ -t & -1 < t \leq 0 \\ 0 & \text{elsewhere} \end{cases}$$

$$2x(t+1) = \begin{cases} 2t+4 & -1 \le t \le 0 \\ 2-2t & 0 < t \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

$$y(t) = x(t+2) + 2x(t+1) = \begin{cases} t+3 & -2 \le t \le -1 \\ t+4 & -1 < t \le 0 \\ 2-2t & 0 < t \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

5. Let

x(t) = u(t-3) - u(t-5) and $h(t) = e^{-3t}u(t)$.

(a) Compute
$$y(t) = x(t) * h(t)$$
.

$$y(t) = x(t) * h(t).$$

$$y(t) = \int_{-\infty}^{\infty} x[n-\tau] * h[\tau] d\tau$$

$$\mathbf{y(t)} = \int_{-\infty}^{\infty} [u(t-3-\tau) - u(t-5-\tau)]e^{-3t}u(t)d\tau$$

Since u(t) is defined from when t = 0 y(t) =
$$\int_0^\infty [u(t-3-\tau)-u(t-5-\tau)]e^{-3t}d\tau$$

for
$$3 \le t < 5$$

$$y(t) = \int_0^{t-3} e^{-3t} d\tau$$

$$y(t) = -\frac{e^{-3t}}{3} \Big|_{0}^{t-3}$$

$$y(t) = -\frac{1}{3}(e^{-3(t-3)} - 1)$$

$$\mathbf{y}(\mathbf{t}) = \frac{1}{3}(1 - e^{-3(t-3)})$$
 for $3 \leq t < 5$

for
$$t \leq 5$$

$$\mathbf{y}(\mathsf{t}) = \int_{t-5}^{t-3} e^{-3t} d\tau$$

$$y(t) = -\frac{e^{-3t}}{3} \Big|_{t-5}^{t-3}$$

$$y(t) = -\frac{1}{3}(e^{-3(t-3)} - e^{-3(t-5)})$$

$$y(t) = \frac{1}{3}(e^{-3(t-5)} - e^{-3(t-3)})$$
 for $t \le 5$

$$y(t) = \begin{cases} 0 & -\infty \le t < 3 \\ 1/3(1 - e^{-3(t-3)}) & 3 \le t < 5 \\ 1/3(e^{-3(t-5)} - e^{-3(t-3)}) & t \le 5 \\ 0 & \text{elsewhere} \end{cases}$$

6. Compute g(t) = (dx(t)/dt) * h(t).

$$x(t) = u(t-3) - u(t-5)$$

$$g(t) = \frac{dx(t)}{dt} * h(t)$$

$$g(t) = \left[\frac{d}{dt} * (u(t-3) - u(t-5))\right] * e^{-3t}u(t)$$

$$Since \frac{d}{dt}u(t) = \delta(t)$$

$$g(t) = [\delta(t-3) - \delta(t-5)] * e^{-3t}u(t)$$

$$g(t) = x(t) * h(t). = \int_{-\infty}^{\infty} x[t - \tau] * h[\tau]d\tau$$

$$g(t) = \int_{-\infty}^{\infty} \delta(t - 3 - \tau) - \delta(t - 5 - \tau) d\tau * e^{-3\tau} u(\tau)$$

$$g(t) = \int_{-\infty}^{\infty} \delta(t - 3 - \tau) d\tau * e^{-3\tau} u(\tau)$$

$$-\int_{-\infty}^{\infty} \delta(t-5-\tau)d\tau * e^{-3\tau}u(\tau)$$

Since

$$\int_{-\infty}^{\infty} x(t) * \delta[t - t_0] dt = x(t_0)$$

$$g(t) = e^{-3(t-3)}u(t-3) - e^{-3(t-5)}u(t-5)$$

Q.7: 2.13 Consider a discrete-time system S_1 with impulse response

$$h[n] = \frac{1}{5}^n u[n]$$

(a) Find the integer A such that $h[n] - Ah[n-1] = \delta[n]$. Since

$$h[n] = \frac{1}{5}^n u[n]$$

$$h[n-1] = \frac{1}{5}^{n-1}u[n-1]$$

Plug in h[n-1] = $\frac{1}{5}^{n-1}$ u[n-1] to h[n] - Ah[n-1] = δ [n]

$$\frac{1}{5}^{n}u[n] - A\frac{1}{5}^{n-1}[u[n-1]] = \delta[n]$$

consider when n=1

$$\frac{1}{5}^{1}u[1] - A\frac{1}{5}^{0}u[0] = \delta[0]$$

$$\frac{1}{5} * 1 - A \frac{1}{5}^{0} * 1 = 0$$

$$\frac{1}{5} - A = 0$$

$$\frac{1}{5} = A$$

$$A = \frac{1}{5}$$

(b) Using the result from part (a), determine the impulse response g[n] of an LTI system S_2 which is the inverse system of S_1 .

$$h[n] - \frac{1}{5}h[n-1] = \delta[n]$$

Definition of inverse system

$$h[n] * q[n] = \delta[n]$$

Convolution of any signal is impulse is the signal itself

$$h[n][\delta[n] - \frac{1}{5}\delta[n-1]] = \delta[n]$$

Thus,

$$g[n] = \delta[n] - \frac{1}{5}\delta[n-1]$$

8. Which of the following impulse responses correspond(s) to stable LTI systems?

(a)
$$h_1(t) = e^{-(1-2j)t}u(t)$$

A system is said to be stable if the impulse response of the system is absolutely integrable.

$$\int_{-\infty}^{\infty} |h_1| dt < \infty$$

$$\int_{-\infty}^{\infty} |e^{-(1-2j)t}u(t)|dt < \infty$$

$$\int_{-\infty}^{\infty} |e^{-t+2jt}u(t)|dt$$

Since the magnitude of the sum of a set of numbers is no larger than the sum of the magnitudes of the numbers, the equation is

$$|y(t)| = \left| \int_{-\infty}^{+\infty} h(\tau) x(t - \tau) d\tau \right|$$

$$\leq \int_{-\infty}^{+\infty} |h(\tau)| |x(t - \tau)| d\tau$$

$$\int_{-\infty}^{\infty} |e^{-t+2jt}u(t)|dt \le \int_{-\infty}^{\infty} |e^{-t}| * |e^{2jt}| * |u(t)|dt$$

$$e^{2jt} = \cos(2t) + j\sin(2t)$$

$$|e^{2jt}| = \sqrt{\cos^2(2t) + j\sin^2(2t)}$$

= 1

$$\int_{-\infty}^{\infty} |e^{-t}| * 1 * |u(t)| dt = \int_{0}^{\infty} |e^{-t}| dt$$

$$\int_0^\infty e^{-t}dt = -e^{-t}\big|_0^\infty$$

$$-(e^{-\infty} - e^{-0}) = -(0 - 1)$$

$$\int_{-\infty}^{\infty} |e^{-t+2jt}u(t)|dt \le 1$$

Since the system is absolutely integrable, system is stable.

9. Consider a causal LTI system whose input x[n] and output y[n] are related by the difference equation

$$y[n] = \frac{1}{4}y[n-1] + x[n]$$

Determine y[n] if

$$x[n] = \delta[n-1]$$

$$h[n] = \begin{cases} 1 & \text{n=1} \\ 0 & \text{elsewhere} \end{cases}$$

Since the System is casual

y[n] = 0 for n < 0

$$y[n] = \frac{1}{4}y[n-1] + \delta[n-1]$$

$$y[0] = \frac{1}{4}y[0-1] + \delta[0-1] = \frac{1}{4}y[-1] + \delta[-1]$$

Since

$$\delta[-1] = 0, y[-1] = 0$$

$$y[0] = \frac{1}{4}0 + 0 = 0$$

$$y[1] = \frac{1}{4}y[1-1] + \delta[1-1] = \frac{1}{4}y[0] + \delta[0]$$

Since

$$\delta[0] = 1, y[0] = 1$$

$$y[1] = \frac{1}{4}0 + 1 = 1$$

$$y[2] = \frac{1}{4}y[2-1] + \delta[2-1] = \frac{1}{4}y[1] + \delta[1]$$

Since

$$\delta[1] = 0, y[1] = 1$$

$$y[2] = \frac{1}{4}1 + 0 = \frac{1}{4}$$

$$y[3] = \frac{1}{4}y[3-1] + \delta[3-1] = \frac{1}{4}y[2] + \delta[2]$$

Since

$$\delta[2] = 0, y[2] = \frac{1}{4}$$

$$y[3] = \frac{1}{4} * \frac{1}{4} + 0 = \frac{1}{4}^2$$

$$y[4] = \frac{1}{4}y[4-1] + \delta[4-1] = \frac{1}{4}y[3] + \delta[3]$$

Since

$$\delta[3] = 0, y[3] = \frac{1}{4}^2$$

$$y[4] = \frac{1}{4} * \frac{1}{4}^2 + 0 = \frac{1}{4}^3$$

y[n] exist from when n = 1 thus, equation is

$$y[n] = \frac{1}{4}^{n-1} u[n-1]$$

Thus, when x[n] = δ [n - 1], the output of casual LTI system is $\frac{1}{4}^{n-1}u[n-1]$

10. Evaluate the following integrals:

(a)

$$\int_{-\infty}^{\infty} u_0(t) * \cos(t) dt$$

$$u_0(t) = \frac{du(t)}{dt} = \delta[t]$$

$$\int_{-\infty}^{\infty} u_0(t) * \cos(t) dt = \int_{-\infty}^{\infty} \delta[t] * \cos(t) dt$$

Integration only exists when t=0, thus $\int_{-\infty}^{\infty}u_0(t)*cos(t)dt$ exist only when t = 0

$$\int_{-\infty}^{\infty} \delta[t] * \cos(t)dt = \delta[0] * \cos(0) = 1 * 1 = 1$$